An Integrated Framework for Assessing Land-Use/Land-Cover of Kelantan, Malaysia: Supervised and Unsupervised Classifications

dc.contributor.authorL B Yeo
dc.contributor.authorW S N Wan Mohamad
dc.contributor.authorR Hasan
dc.contributor.authorN I Othmani
dc.contributor.authorN H Abdul Hamid,N Ramlee
dc.contributor.authorO T S Yeo
dc.coverage.publicationMalaysia
dc.date.accessioned2024-05-15T01:44:15Z
dc.date.available2024-05-15T01:44:15Z
dc.date.issued2022
dc.description.abstractThis paper proposes an integrated framework to assess the LULC by using the latest complimentary data of Landsat 8 from Earth Explorer-USGS, and subsequently processed in Geographic Information System application (ArcGIS 10.8) by executing two classification techniques: i) interactive supervised classification (ISC) and ii) Iso cluster unsupervised classification (ICUC). The study area is Kelantan, a state located in Peninsular Malaysia. Three hundred sampling points were randomly generated within the boundary of Kelantan to compare the classified map of 2021 with ground data using Google Earth Pro 7.3 and Google Street View.
dc.identifier.citationYeo, L. B., Mohamad, W. W., Hasan, R., Othmani, N. I., Hamid, N. A., Ramlee, N., & Yeo, O. T. S. (2022). An integrated framework for assessing land-use/land-cover of Kelantan, Malaysia: Supervised and unsupervised classifications. In IOP Conference Series: Earth and Environmental Science (Vol. 1053, No. 1, p. 012026). IOP Publishing.
dc.identifier.urihttps://repoemc.ukm.my/handle/123456789/746
dc.languageen
dc.publisherIOP Publishing
dc.publisher.alternativeIOP Conference Series: Earth and Environmental Science
dc.subjectLULC
dc.subjectimage classifications
dc.subjectGIS
dc.subjectKelantan
dc.titleAn Integrated Framework for Assessing Land-Use/Land-Cover of Kelantan, Malaysia: Supervised and Unsupervised Classifications

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
13_An_Integrated_Framework_for_Assessing_Land-Use_Land-Cover_of_Kelantan,_Malaysia_Supervised_and_Unsupervised_Classifications.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format

Collections