Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In

    For Admin Login

Repository logo
  • Communities & Collections
  • Browse
  • User Manual
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In

    For Admin Login

  1. Home
  2. Browse by Author

Browsing by Author "Ahmed El-Shafie"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemRestricted
    A new soft computing model for daily streamflow forecasting
    (Springer, 2021) Saad Sh. Sammen; Mohammad Ehteram; S. I. Abba; R. A. Abdulkadir; Ali Najah Ahmed; Ahmed El-Shafie
    The ability to forecast streamflow is crucial, as it can help mitigate flood risks. Long-term stream flow data records are needed for hydropower plant construction, flood prediction, watershed management, and long-term water supply use. An accurate assessment of streamflow is considered as very challenging and critical tasks. A new predicting model is developed in this research, combining the technique of sunflower optimization (SFA) as an evolutionary algorithm with the multi-layer perceptron (MLP) algorithm to predict streamflow in Malaysia's Jam Seyed Omar (JSO) and Muda Di Jeniang (MDJ) stations.

copyright © 2025 Pusat Pengurusan Alam Sekitar

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback