Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In

    For Admin Login

Repository logo
  • Communities & Collections
  • Browse
  • User Manual
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In

    For Admin Login

  1. Home
  2. Browse by Author

Browsing by Author "Ahmad Tarmizi Alwi"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Saline Water Intrusion through Rajang River Network due to Sea Level Rise
    (IOSR Journal, 2019) Dunstan Anthony Pereira; AmriMd Shah; Md Mobassarul Hasan; Anizawati Ahmad; Ahmad Tarmizi Alwi; Sheikh Affan; Zulazman Md Lazim
    Rise in sea levels is one of the disastrous effects of climate change. A relatively small increase in sea level could affect natural coastal systems (Ami et. al., 2019). The main objective of this study is to assess the saline water intrusion through Rajang river network due to Sea Level Rise (SLR) at the year 2100. To carry out the study, several numerical modelswere developed through a proper calibration process to make the models more reliableand useful. At first, Hydrological Model was developed which providesthe flow contribution in Rajang river network fromrainfall-evaporation dataset. After that, well calibrated Coastal Hydrodynamic and Salinity Model were developed which produce flow pattern and salinity profile respectively within the South China Sea and Rajang estuary . Concurrently, river Hydrodynamic and Salinity Model were developed based on the boundary condition from Hydrological,Coastal Hydrodynamic, and Coastal Salinity model. Evidently, from study findings that 1ppt salinity contourcan travel up to 96km from the rivermouthof Rajang river whereas it can travel up to 44km in BatangIgan river as compared when there is no SLR.

copyright © 2025 Pusat Pengurusan Alam Sekitar

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback